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a b s t r a c t

Irrigation accounts for 70% of global water use by humans and 33–40% of global food production comes
from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed
to manage increasingly scarce water resources and to improve food security in the face of yield gaps,
climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this infor-
mation is not available for many regions of the world. This study aims to improve characterization of global
rain-fed, irrigated and paddy croplands by integrating information from national and sub-national sur-
veys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification
of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-
fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa
2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland.
Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including
63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our
results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining
information from multiple data sources. However, regions with rapidly changing irrigation or complex
mixtures of irrigated and non-irrigated crops present significant challenges and require more and better
data to support high quality mapping of irrigation.

© 2015 Elsevier B.V. All rights reserved.

Introduction

In the coming decades, demand for food and competition
for arable lands will intensify pressure on existing croplands to
increase crop yields (Foley et al., 2011). This issue is especially
pressing in the developing world, where population growth and
higher per-capita consumption will increase demand for food, and
where urban expansion and demand for biofuels will create com-
petition for agricultural land (Godfray et al., 2010; Rounsevell et al.,
2005; Searchinger et al., 2008). These demands will also compete
with the need to preserve services provided by natural ecosystems
(Green et al., 2005; Tilman et al., 2001). Given these constraints,
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management strategies that increase the productivity of existing
agricultural land will be required.

Increased agricultural productivity is generally achieved by
increasing inputs, augmenting the number of crops grown per
year, or both. Worldwide, irrigation is the most important and
widespread means of achieving this goal (Lobell et al., 2009). Irri-
gation reduces yield loss caused by drought and water stress, and
increases flexibility in crop planting dates, crop types, and cultivars.
Irrigation will therefore continue to be an important management
strategy in the coming decades as farmers adapt to the Earth’s
changing climate (Evans, 1998; Rosenzweig and Parry, 1994).

Irrigation currently accounts for about 70% of global freshwater
withdrawals, creating substantial changes to regional hydrology
(FAO, 2011; Ozdogan et al., 2010a). In particular, overuse of irriga-
tion has led to unsustainable groundwater depletion in many areas
(Lemly et al., 2000; Rodell et al., 2009; Scanlon et al., 2012). Mov-
ing forward, it will be important to balance irrigation benefits to
crop yields against negative impacts on long-term sustainability
and regional hydrology.
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At global scale, assessment of the benefits and negative conse-
quences of irrigation requires accurate information regarding the
location and extent of irrigated croplands. However, current infor-
mation regarding global patterns of irrigation includes significant
uncertainty, and regional-to-global studies of hydrology, agricul-
tural land use, and food security require improved information
related to water use by croplands. Currently, the best available
global irrigation data sets reflect irrigation infrastructure and not
actual irrigation (Portmann et al., 2010), or are based on census
data sets available at the scale of national or sub-national inventory
units (e.g., FAOSTAT). Remote sensing, which provides repeated,
high resolution information related to land cover and land use at
global scales, provides an obvious data source for addressing this
information gap. Indeed, several recent studies have used remote
sensing with good success to map irrigation at regional to national
scales (e.g., Biggs et al., 2006; Pervez and Brown, 2010; Ozdogan
and Gutman, 2008). However, global scale remote sensing of irri-
gation faces many challenges including wide variations in climate
conditions, natural vegetation regimes, agricultural management
practices, and the quality of available ancillary data.

With these issues in mind, the research and data sets described
in this paper have two main elements. First, we develop new meth-
ods to address the challenge of mapping global irrigated croplands
based on a combination of remote sensing, climate, and inventory
data sets. Second, we use these methods to compile a new map of
global rain-fed, irrigated, and paddy croplands circa 2005, thereby
providing an up-to-date representation of global agricultural water
management at significantly higher spatial resolution than is cur-
rently available. Because irrigation status is tightly linked to both
agricultural production and food security, the data sets developed
through this work have significant potential to support studies of
agricultural productivity, food security, and the impacts of agricul-
ture on regional-to-global hydrology.

Background

Global irrigation datasets

The United Nations Food and Agriculture Organization (FAO)
produces two data sets related to global irrigation. Since 2001, the
Statistics Division of the FAO (FAOSTAT) has used annual question-
naires and expert analysis to generate estimates for the area of
rain-fed croplands, irrigated croplands, and rice-growing (typically
paddy) croplands for most countries worldwide. However, FAO-
STAT data are only available at spatial resolutions corresponding to
the inventory units for which they were collected. They therefore
lack the spatial detail required for many applications. To overcome
this, the FAO also maintains a gridded map of irrigation equipment,
the Global Map of Irrigated Areas (FAO–GMIA), which is produced
at 5 arc-minute spatial resolution (Siebert et al., 2013). This map
provides a global representation of the area equipped for irriga-
tion at 5 arc-minute spatial resolution, circa 2005. Note, however,
that the area equipped for irrigation represents an upper limit to
the irrigated area in each cell; drought, equipment failures, and
above-average precipitation can all cause the actual area of irri-
gated croplands to differ from the area equipped for irrigation.
Conversely, the presence of unrecorded irrigation infrastructure,
such as illegal wells and boreholes, may cause the FAO–GMIA to
under-report irrigation in other areas.

Recently, several projects have produced gridded data sets
that represent downscaled versions of production statistics from
FAOSTAT. Portmann et al. (2010) combined the FAO–GMIA map
with crop type and crop calendar data to create a comprehen-
sive database of global agricultural land use. The result, which
they call the Monthly Irrigated and Rain-fed Crop Areas in 2000

(MIRCA2000) database, provides a characterization of global agri-
cultural practices circa 2000 at 5 arc-minute spatial resolution.
Although based on the FAO–GMIA data set, the methods used to
generate MIRCA2000 account for irrigation infrastructure that was
not in use circa 2000 and use data sets derived from agricultural
censuses that include information on both irrigation infrastructure
and irrigated areas that were harvested. Additionally, the Global
Agro-Ecological Zones project produced by the FAO and the Interna-
tional Institute for Applied Systems Analysis offers 5 arc-min grids
of irrigated area by crop type in 2000 (IIASA/FAO, 2012). Finally,
Liangzhi et al. (2014) developed the Spatial Production Allocation
Model to distribute agricultural statistics onto a regular grid.

An alternative to using inventory data, which we exploit here,
is to use remotely sensed data sources. For example, Thenkabail
(2006) produced a global map of irrigation circa 2000 using data
from the Advanced Very High Resolution Radiometer (AVHRR), the
Système pour l’Observation de la Terre Vegetation, and several
ancillary layers. In addition to mapping the presence of irrigation,
the resulting Global Irrigated Area Map which was produced by
the International Water Management Institute (hereafter referred
to as IWMI–GIAM), characterizes irrigation water source type and
cropping intensity. Unfortunately, the area of global irrigation circa
2000 from IWMI–GIAM and FAOSTAT differ by more than 30%.
Hence, improved information related to the global distribution of
irrigated croplands is urgently needed.

It is important to note that it is relatively rare for irrigation map-
ping efforts to rely either solely on remote sensing data or not at
all. Rather, most global irrigation data sets incorporate a variety of
data sources, some inventory based and others derived from remote
sensing observations. The most common approach uses remote
sensing data sets to spatially distribute inventory statistics (e.g.,
MIRCA2000). In this study, we similarly blend data sources, but we
do not constrain irrigated areas to those estimated in inventory
statistics.

Remote sensing of agriculture

The use of remote sensing in agriculture began nearly four
decades ago through a series of large scale field experiments:
the Corn Blight Watch Experiment (MacDonald et al., 1971), the
Large Area Crop Inventory Experiment (MacDonald et al., 1975),
and the Agriculture and Resources Inventory Surveys Through
Aerospace Remote Sensing experiment (AgRISTARS, 1981). These
studies laid the groundwork for modern quantitative remote sens-
ing, and remote sensing is now commonly used in a wide range
of agricultural applications including real time monitoring of crop
health, famine early warning, and yield forecasts at regional scale
(FEWS NET, 2012; USDA FAS, 2012).

Over the last decade several global land cover products have
been produced using moderate resolution remote sensing (300-
m–1-km) that include one or more classes of agricultural land use.
The most prominent examples include GLC2000 (Bartholomé and
Belward, 2005), GlobCover (Arino et al., 2007), and NASA’s Mod-
erate Resolution Imaging Spectroradiometer (MODIS) Land Cover
Type product (Friedl et al., 2010). However, these data sets are
intended to capture a variety of land cover attributes, and are not
optimized for capturing agricultural land management. Addition-
ally, their moderate resolutions can obscure subpixel variability in
land management common in many agricultural regions, particu-
larly those in Africa and Asia.

Building off these efforts, some studies have combined inven-
tory statistics with products derived from remote sensing to
compile lower resolution (e.g., 5 arc-minute) maps of global agri-
cultural intensity and extent. Specifically, Ramankutty et al. (2008)
used FAO inventory statistics in combination with maps of agricul-
tural land use derived from the MODIS land cover product to create
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a global map of agricultural intensity at 5 arc-minute spatial res-
olution. In a similar study, Goldewijk, et al. (2007) combined data
from the IGBP DISCover data set (Loveland et al., 2000), GLC2000,
and FAO inventory statistics to create a global map of agricul-
tural extent, also at 5 arc-minute spatial resolution. The datasets
created through both these efforts have been widely used, reinforc-
ing the importance and utility of spatially explicit global cropland
databases. However, they represent the state of the art in global
cropland mapping, and are not perfect representations of agricul-
tural practices on the ground. As they utilize global land cover maps,
they incorporate the previously mentioned issues present in those.
Additionally, they are based upon the FAO inventory statistics,
which are not highly accurate in countries with unstable govern-
ment or poor data collection networks.

At regional scales, remote sensing data have been used to refine
information related to agriculture by supplementing agricultural
extent data sets with information related to crop management.
For example, Biradar and Xiao (2011) used data from MODIS to
map multiple cropping systems in India. Recent work has also
demonstrated the feasibility of using remote sensing in concert
with crop inventory statistics and gridded climate data to map irri-
gation at regional-to-national scales (Biggs et al., 2006; Ozdogan
and Gutman, 2008; Ozdogan et al., 2010b; Pervez and Brown, 2010).
Moreover, several studies have shown the utility of remote sensing
data for mapping paddy rice management in Asia (Gumma, 2011;
Xiao et al., 2005; Shao et al., 2001).

The goal of the research described in this paper is to build upon
these previous efforts by developing a new database depicting
Global Rain-fed, Irrigated and Paddy Croplands circa 2005, which
we refer to hereafter as GRIPC. Specifically, we implement an
approach that uses the agricultural extent information available
from the MODIS Land Cover Type Product, then stratifies global
cropland areas into the three classes of agricultural water manage-
ment. The classification utilizes spectral data from remote sensing,
climate data, and previous knowledge from the MIRCA2000 data
set.

Data and methods

Classification scheme and training data

We map three classes of agricultural land use in GRIPC:
rain-fed croplands, irrigated croplands, and paddy croplands
(Table 1). Paddy croplands are mapped separately, regardless of
irrigation status, due to their distinct hydrological footprint and
unique signature in remote sensing data sets (Xiao et al., 2005).
Uncropped areas, including both unvegetated and natural veg-
etation, were excluded from the database using a mask based
on the MODIS Land Cover Type product. This mask was cre-
ated by Damien Sulla-Menashe at Boston University (personal
communication, February 14, 2011). It is based primarily on the
land cover classification assigned during 2004–2006, but also con-
sidered the classifications from surrounding years in the decade.
Multiple years of data were considered to reduce the influence of

noise in the classified maps as well as short-term changes in land
management, such as fallow seasons. The MODIS Land Cover Type
Product contains two cropland classes: class 12 (Agriculture) and
class 14 (Agriculture/Natural Vegetation Mosaic). In general, areas
were retained as cropland when they were classified as a cropland
class in a majority of years.

To create GRIPC, we used a supervised classification approach,
which relies on training data to estimate a classification model. The
training database we used contains 352 sites that were selected to
capture the worldwide diversity of global croplands, where each
site in the database was composed of a polygon averaging about
600 ha, or roughly 25 MODIS pixels. To build this database, we
first assessed 328 agricultural sites that were previously com-
piled to create the MODIS Global Land Cover Type Product. To
support GRIPC, each of these sites was screened and character-
ized with regard to its irrigation status using a combination of
data sources including high-resolution imagery available through
Google Earth, the FAO–GMIA map, and in some cases, time series of
modeled evaporative demand based on the approach described by
Thornthwaite (1948). Google Earth imagery provided information
regarding irrigation status when it displayed out-of-season green-
ness or the presence of irrigation infrastructure. Sites where there
was no clear convergence of evidence regarding how the agricul-
ture was managed with respect to irrigation or paddy flooding were
eliminated.

To ensure that the training site database successfully captured
geographic variability in global croplands, we used the Global Agro-
Ecological Zones described by Fischer et al. (2001) (Table 2) and
assessed how well each agro-ecozone in each continent was sam-
pled in the site database. Based on this assessment, we added
sites to capture rain-fed, irrigated, and paddy croplands in under-
represented agro-ecozones and regions. The final site database
consisted of 149 sites retained from the MODIS Land Cover Type
product database, supplemented with 203 additional sites created
using high-resolution satellite data available in Google Earth, yield-
ing a total of 352 sites worldwide (Fig. 1).

Decision tree classification

Classification of cropland types in GRIPC was performed using
C4.5, a univariate decision tree classification algorithm that is
widely used for land cover mapping and other supervised clas-
sification applications (Quinlan, 1993). In generating decision
trees, we used a machine learning technique known as “boost-
ing” (Quinlan, 1996), which has been shown to improve the
accuracy of classification results. Following the general approach
used by the MODIS Land Cover Type Product, boosting allows
us to estimate likelihoods for each class at each pixel (McIver
and Friedl, 2002). In addition to MODIS data, inputs to the
classification included gridded data related to climate and agro-
ecozones, which are both predictive of irrigation and therefore
improve classification results (Table 3).

MODIS input data were mostly derived from Nadir-BRDF-
Adjusted Surface Reflectances (NBAR; Schaaf et al., 2002), which

Table 1
Description of classes of agricultural water management mapped in GRIPC.

Class name Class description Number of training sites

Rain-fed croplands Rain-fed croplands, also called dryland farming, include all cropland where no water from any
storage or delivery mechanism is utilized, but crops are not flooded. Harvest must occur at least
once per year.

144

Irrigated croplands Irrigated croplands include cropland where water from available sources is delivered to crops, but
crops are not flooded. Harvest must occur at least once per year.

161

Paddy croplands Paddy croplands, typically used for growing rice, include croplands where fields are flooded,
leading to inundation. Flooding must persist longer than two weeks. Water sources for flooding
may be rain or irrigation. Harvest must occur at least once per year.

47
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Table 2
Description of agroecozones based on Fischer et al. (2001).

Description Temperature
growing period
(TGP)a

Length of
growing period
(LGP)b

Number of
rain-fed sites

Number of
irrigated sites

Number of
paddy sites

1 No thermal season TGP < 90 days LGP < 90 days 0 0 0
2 One thermal season, moisture limited 90 days < = TGP < 210 days LGP < TGP 11 12 0
3 One thermal season, no moisture limits 90 days < = TGP < 210 days LGP > = TGP 10 3 0
4 Two thermal seasons, both moisture limited 210 days < = TGP < 365 days LGP < 90 days 3 19 0
5 Two thermal seasons, one moisture limited 210 days < = TGP < 365 days 90 days < = LGP <= 210 days 11 13 1
6 Two thermal seasons, no moisture limits 210 days < = TGP < 365 days LGP > = 210 days 19 15 3
7 No freeze, year-round moisture limits TGP = 365 days LGP < 90 days 10 44 1
8 No freeze, one season without moisture limits TGP = 365 days 90 days < = LGP <= 210 days 34 32 7
9 No freeze, two or more seasons without moisture limits TGP = 365 days LGP > = 210 days 39 25 24

a TGP is computed by Fischer, et al. (2001) as the number of days when mean daily temperature exceeds 5◦ C, using the Climate Research Unit (CRU) database climatology
(years 1961–1990) (New et al., 1999).

b LGP is computed as above, with additional requirements on computed values of actual evapotranspiration (ETa).

Fig. 1. Distribution of rain-fed (cross), irrigated (square) and paddy (triangle) sites overlaid on the agroecozone stratification (See Table 2 for descriptions).

span the visible, near- and mid-infrared spectrum and are avail-
able at 8-day temporal resolution. We also included three indices
based on combinations of NBAR data: the two band Enhanced Veg-
etation Index (EVI2; Jiang et al., 2008), the Normalized Difference
Wetness Index (NDWI; Gao and Goetzt, 1995), and the Normalized
Difference Infrared Index (NDII; Jang et al., 2006). These indices
were included to help capture two key surface properties that
are affected by irrigation and paddy management: the amount of

photosynthesizing vegetation and the surface wetness. We also
included MODIS daytime Land Surface Temperature (LST) and the
MODIS diurnal surface temperature range, which provide informa-
tion related to vegetation surface moisture status (Ozdogan et al.,
2010; Wan, 2008). To reduce temporal correlation, we aggregated
data in each band to 40-day periods using the mean value of all
high quality observations during each 40-day period based on NBAR
quality assurance data.

Table 3
Data sets used in decision tree classification of water management classes for agricultural areas.

Name Description Spatial resolution Temporal resolution

MODIS NBAR 8-day observations in 7 bands averaged for 9 periods/year 500 m ∼6 weeks
MODIS EVI2, NDWI, and NDII Calculated from 8-day MODIS data, then averaged for 9 periods/year 500 m ∼6 weeks
MODIS LST Daytime and nighttime 8-day observations averaged for 9 periods/year 1 km ∼6 weeks
MODIS annual metrics Minimum, maximum, mean, and standard deviation of all the above data sets 500 m–1 km Annual
WORLDCLIM 19 bioclimatic variables ∼1 km Static
Average Climate Moisture Index Computed using WBM-Plus (Douglas pers comm) 0.5 Degree Static
Average Annual Moisture Index Based on the approach described by Ramankutty et al. (2002), computed by Sibley

(pers comm.)
5 Min Static

Agroecozones, generated by BU Classification based on IIASA Agroecological Zones project plate 07 (Length of Growing
Period) and plate 04 (Temperature Growing Period)

0.5 Degree Static

Hemispheric code A discrete index (0,1,2) distinguishing among Northern hemisphere (above 23◦N), the
tropics, and Southern hemisphere (below −23 ◦S)

500 m Static
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Fig. 2. Flow chart of production method for GRIPC.

To complement these remote sensing inputs, we also included
monthly bioclimatic indices from the WORLDCLIM database
(Hijmans et al., 2005 http://www.worldclim.org/bioclim), along
with two additional climate-based indices that characterize the
hydrologic regime at each pixel (Ramankutty et al., 2002; Willmott
and Feddema, 1992). These two indices both measure aridity, but
differ in the method of estimating moisture availability. One index
was developed by Ramankutty, et al. (2002) for assessing agricul-
tural suitability and updated by Adam Sibley at Boston University
(personal communication, June 3, 2010). It is based on actual
evapotranspiration and potential evapotranspiration. We also used
the Climate Moisture Index developed by Willmott and Feddema
(1992), which is based upon precipitation and potential evapotran-
spiration. A visual inspection of both aridity estimates determined
that they include unique information, and are both useful in this
study.

Fusing classification results with crop inventory data

Crop inventory data provide a wealth of information at national
and sub-national scales related to the global distribution of crop-
lands. Remote sensing data, on the other hand, provide indirect but
much finer spatial resolution information related to global land
cover and land use. To exploit the strengths of each data source
we fused results from the remote sensing-based classification
described in the previous section with existing inventory-based
data sets (Fig. 2). To do this, we used Bayes’ rule to combine class-
specific likelihoods generated from the decision tree classification
at each pixel with spatially explicit prior probabilities for the pres-
ence of irrigated, rain-fed, and paddy croplands. To prescribe the
prior probability of each class at each cell, we used two layers
that are included in the MIRCA2000 data set at 5 arc-minute spa-
tial resolution: (1) global crop extent, and (2) global maximum
monthly growing areas. The first layer provides the area for all crops
grown in each cell, and the second layer provides the maximum
area under cultivation in each month for 26 crop types under rain-
fed and irrigated conditions. The area of paddy croplands in each
cell was prescribed by adding the areas of rice cultivation under
both rain-fed and irrigated conditions from MIRCA2000. The areas
corresponding to non-paddy rain-fed and non-paddy irrigated con-
ditions were then estimated by subtracting the area of rain-fed and
irrigated rice crops from the total area of rain-fed and irrigated
crops. The resulting proportions of rain-fed, irrigated, and paddy
croplands in each 5 arc-minute cell were then used to prescribe
the prior probability for each class in each cell.

To account for the fact that 500 m MODIS pixels include mix-
tures of land cover types, we treated pixels labeled as “Agriculture”
in the MODIS Land Cover Product as being composed of 80 per-
cent agricultural land use by area, and pixels labeled as agricultural
mosaic as being composed of 50 percent agricultural land use. To
estimate total irrigated area (including irrigated paddies) at global,
continental, and national levels, we used estimates for the propor-
tion of rice paddies managed by irrigation from Huke and Huke
(1997). For all Asian countries, we used the country-level values
reported by Huke and Huke (1997). For all other countries, we used
the average proportion of rice paddies managed by irrigation (60%).

Assessment of irrigation maps

Assessment is a key component of map production, espe-
cially when remote sensing data are utilized. Thorough validation
exercises are the preferred method for validation, but require high-
quality data sets collected at appropriate spatial and temporal
scales using random sample designs. In the case of GRIPC, such
validation would require independent data regarding the irriga-
tion status of 500 m pixels during 2004–2006 at a random set of
locations around the globe. No such data sets are in existence.

We therefore used two approaches for evaluating GRIPC: (1) a
cross-validation approach to accuracy assessment based on itera-
tive withholding of sites from the training data, and (2) comparison
against existing independent data sets. For the comparison, we
identified existing data sets in key locations to use as benchmarks
to evaluate GRIPC. Specifically, we collected high-quality, inde-
pendent data sets describing irrigated and paddy areas at global,
regional, and local scales, and we assessed the accuracy of GRIPC
relative to these data sets. Our comparisons focus on the Irrigated
Cropland and Paddy Cropland classes in Table 1 because other data
sets provide maps of global agriculture and the primary goal of this
work is to improve information related to the global distribution
and intensity of irrigated croplands. Our assessment includes three
different scales of analysis:

(i) Global assessment: Country-level estimates of area actually
irrigated are available from FAOSTAT for at least one year during
the period 2004–2006 for 64 countries, which encompasses 59%
of global irrigated area (FAO, 2011). Similarly, rice area harvested,
which we use here as a surrogate for paddy area, is available from
FAOSTAT for at least one year during 2004–2006 for 112 countries.
For countries where multiple years of data are available from FAO-
STAT, we compare our results against multiyear averages. While
rice area harvested may overestimate paddy area in regions where
dryland rice is grown, dryland rice is generally a small propor-
tion (∼7%) of total rice agriculture (Huke and Huke, 1997). Hence,
this should be a relatively minor source of error. Further, rice area
harvested counts double-cropped rice paddies twice, leading to
overestimation of the land area devoted to rice-growing in FAO-
STAT.

(ii) Regional assessment: We assessed GRIPC at regional scale
using (1) non-gridded data for irrigation in Europe, (2) non-gridded
data for paddy agriculture in India and China, and (3) gridded data
sets describing irrigation in Australia and the United States. For
Europe, we used the Farm Structure Survey (FSS), a census of agri-
cultural holdings conducted by all European Union member states
that is administered about once every three years (Eurostat, 2004).
The FSS does not include small farms, which are defined as farms
with less than one hectare and with production below a thresh-
old determined by each member country. Here we used the finest
level of FSS data available (Nomenclature of Territorial Units for
Statistics (NUTS) level 2), which correspond to sub-national areas
that are generally larger than county or district areas. In Asia, we
used maps of paddy rice in China and India compiled by Frolking
et al. (2002) and Frolking et al. (2006). In North America, we used

http://www.worldclim.org/bioclim
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Fig. 3. Global maps of agricultural water management classes. (a) Rain-fed area; (b) Irrigated area; (c) Paddy area.
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Fig. 4. Full-resolution maps of key agricultural regions. Rain-fed areas are shown in red, irrigated areas in green, and paddy areas in blue. (a) Central United States, (b) Central
Europe, (c) Northern India, (d) Argentina, (e) Northern Africa, and (f) Southeastern Australia(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).

maps of irrigated area for the United States from the USGS at 250 m
spatial resolution in 2007 (MIrAD-US) (Pervez and Brown, 2010).
In Australia, we used version 4 of the “ACLUMP” database, which
includes a map of irrigated agriculture at 50 m spatial resolution
compiled by the Australian Bureau of Agricultural and Resource
Economics (ABARES) using inventory statistics and remote sensing
data from 2005–2006 (Bureau of Rural Sciences, 2010).

(iii) Local assessment: Estimates of irrigated area from GRIPC
were compared against two data sets that map irrigation at the scale
of individual fields. The first data set was compiled by the Univer-
sity of Georgia and Albany State University by merging databases
for irrigation permits and water use meters with maps derived
from aerial imagery in Georgia in 2007 and 2008 (Hook et al.,
2009). The second data set provides information on field-scale irri-
gation in Nebraska, and was compiled by the University of Nebraska
Center for Advanced Land Management Information Technologies
(CALMIT) using multi-date Landsat imagery and aerial imagery
(CALMIT, 2005).

Overview and assessment of GRIPC

Global patterns in rainfed, irrigated and paddy croplands
GRIPC includes 984.6 million hectares (Mha) of rain-fed crop-

lands, 248.5 Mha of non-paddy irrigated croplands, and 128.2 Mha
of paddies (Fig. 3; Table 4). The main features of global rain-fed
agriculture are clearly captured by GRIPC, including geographi-
cally extensive belts of rain-fed croplands in central North America,
the Pampas of South America, Europe, central Eurasia, southwest-
ern India, and southern Australia (Fig. 4). Major regions of paddy
and non-paddy irrigation are successfully identified in Asia (China,
India, and Pakistan) and the United States (Midwest and Central
Valley). Conventionally irrigated croplands are most common in the

temperate mid-latitudes, while paddy croplands are most common
in the tropics.

Comparing global estimates of irrigation is difficult due to differ-
ing definitions used by the major data sets. For instance, FAOSTAT
does not provide a global estimate of area actually irrigated, since
this quantity is not known for all countries. However, FAOSTAT
does provide global and continental estimates of area equipped
for irrigation, which is expected to be higher than the area actu-
ally irrigated. The GRIPC estimate of total irrigated land (314.1 Mha
which includes irrigated paddies) is in close agreement with total
area equipped for irrigation in 2005 from FAOSTAT (308.5 Mha),
but is 21% less than the area included in IWMI–GIAM circa 2000
(398.5 Mha) (Table 4). Further, GRIPC includes ∼50% more irrigated
land than the total irrigated area in 2000 in MIRCA2000 (217.8
Mha). Finally, the area of global non-paddy irrigated area circa
2005 (248.5 Mha) in GRIPC is substantially higher (∼50%) than the
area of non-rice irrigated cropland in 2000 included in MIRCA2000
(165.1 Mha).

Table 4
Irrigated areas at global and continental scales from new map and previous studies.
All values are in Mega hectares.

FAOSTAT (area
equipped)

MIRCA2000
(area cropped)

IWMI-GIAMa GRIPC

Global 304.5 217.8 398.5 314.1
North America 23.5 27.5 35.4 36.3
South America 11.8 7.9 17.8 16.2
Europe 26.3 15.1 42.5 23
Asia 218.1 153.2 290.6 216.5
Africa 13.5 10.1 8.7 13
Oceania 3.1 2.7 12 7.5

a includes temporary fallow areas equipped for irrigation.
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Fig. 5. Histogram of differences in GRIPC (summarized at the 5 arc-minute level) from MIRCA2000 in total cropland (black), as well as rain-fed (dark gray), irrigated (light
gray), and paddy (white) croplands.

Comparison of GRIPC with MIRCA2000, which is included in the
production of GRIPC via prior probability adjustment, shows how
the finer-scale classification of the decision tree has influenced
the map. Fig. 5 plots the frequency distribution for differences
between GRIPC and MIRCA2000 at 5 arc-minute spatial resolution
and demonstrates that GRIPC and MIRCA2000 show broad agree-
ment regarding the amount and location of irrigated and paddy
croplands worldwide. The MIRCA2000 estimate is expected to be
lower, since it is calculated via the maximum monthly irrigated
area, representing a lower limit of irrigated area in regions with
multiple growing seasons. Indeed, GRIPC includes less rain-fed
cropland and more irrigated cropland than MIRCA2000 in several
key agricultural regions including Northwestern India, the North
China Plain, the Southern Volga Delta, Morocco, Southeastern US,
the upper Mississippi Delta, the US Great Plains, Sao Paulo, and the
Murray-Darling basin. Conversely, GRIPC includes less paddy crop-
land than MIRCA2000 in Northeastern India, Northern Vietnam,
and Southern Nigeria.

A cross-validation of GRIPC, produced by withholding each of
the training sites and obtaining a class label for the pixels in the
withheld site, shows that GRIPC has an overall accuracy of 69%
within cropland areas (Table 5). This is similar to the accuracy of
other global land cover maps based upon moderate-resolution data,
due to the prevalence of mixed pixels (Philippe et al., 2006; Friedl
et al., 2010). Moreover, irrigation, which occurs at the field scale,
is particularly prone to causing mixed pixels, since agricultural
fields in many places are smaller than a 500 m MODIS pixel. This
cross-validation approach provides a conservative (lower bound)
estimate of map accuracy of GRIPC, since each pixel in the confu-
sion matrix was classified without the benefit of the full training
data set used for the final map. Note that these accuracy estimates
are not unbiased, since they are not based upon a random sample
of locations, and therefore care should be taken with their inter-
pretation.

Comparison with National irrigated cropland inventories

GRIPC estimates of irrigated area agree well with those from
FAOSTAT for the 64 countries with FAOSTAT estimates avail-
able during 2004–2006 (Fig. 6a). Specifically, GRIPC estimates the
percent of country area under irrigation with good agreement
(R2 = 0.89) and a slope close to 1.0 (Fig. 6a). For comparison, the total

area available for irrigation (TAAI) from IWMI–GIAM circa 2000
shows similar agreement with FAOSTAT (R2 = 0.84), but has a slope
of 1.4 (i.e., IWMI over-estimated irrigated area relative to FAOSTAT
by 40%). Thus, both maps capture country-to-country level varia-
tion in agricultural water management, but GRIPC is less prone to
overestimating irrigated areas than IWMI–GIAM.

India, China and Pakistan dominate the total global area of
irrigation, encompassing ∼75 percent of all irrigated area in the
countries considered. Interestingly, both IWMI–GIAM and GRIPC
estimate significantly more irrigated area in India than FAOSTAT;
India contains 58.9 Mha according to FAOSTAT, 101 Mha accord-
ing to IWMI–GIAM (72 percent more), and 77.5 Mha according to
GRIPC (32 percent more). IWMI–GIAM was extensively validated
in India, implying that the higher estimates of irrigated area in
IWMI-GIAM and GRIPC are reasonable. China, the second most-
irrigated country, contains 53.9 Mha of irrigated cropland according
to FAOSTAT, 112 Mha according to IWMI–GIAM, and 79.2 Mha
according to GRIPC. In Pakistan, the data sets show relatively close
agreement: FAOSTAT estimates 19.0 Mha of irrigated cropland,
IWMI–GIAM includes 14.0 Mha and GRIPC estimates 15.6 Mha.
Together, these three countries account for 84% of the difference
(by area) between GRIPC and FAOSTAT, and 89% of the difference
between IWMI–GIAM and FAOSTAT.

Irrigated croplands in Europe

Estimates for the irrigated area fraction in Europe from GRIPC
show agreement with inventory data in 2004 across 204 FSS
NUTS2-level units (R2 = 0.82; Fig. 6b). However, the slope for a best
fit line for this relationship is ∼1.3, indicating overestimation of irri-
gated area fractions in Europe by GRIPC. Indeed, Fig. 6 shows that
highly irrigated NUTS2 areas (areas with >0.2 Mha irrigated area
in FSS; solid squares in Fig. 6b) often appear above the one-to-one
line, indicating that GRIPC overestimates irrigated areas in some
irrigated regions, including Northern Italy, Greece, and Southern
Spain. The specific reasons for this are unclear. However, some of
these semi-arid regions are ideal for both dryland wheat farming
and irrigated farming of cash crops, including olives, which presents
significant challenges for remote sensing-based discrimination of
irrigation (Wriedt et al., 2009a).

For comparison, Fig. 6b shows that the IWMI–GIAM map pro-
vides similar results, but tends to underestimate irrigation in areas
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Table 5
Confusion matrix produced with cross-validation of GRIPC using training data. Pixels were excluded which were unclassifiable due to missing data or were removed from
GRIPC with the cropland mask.

GRIPC rainfed GRIPC irrigated GRIPC paddy Total Omission rate Comission rate Mapping accuracy

STEP rainfed 1642 162 75 1879 15% 40% 62%
STEP irrigated 699 1273 336 2308 45% 13% 49%
STEP paddy 50 147 371 568 35% 72% 38%
Total 2391 1582 782 4755 69%

Fig. 6. (a) Comparison of country-level estimates of irrigated area fraction from the new data set presented in this paper and IMWI against corresponding data from FOASTAT.
(b) Comparison of satellite-based irrigated area estimates with those from FSS at the NUTS-level. (c) Comparison of country-level estimates of paddy area fraction from the
new data set presented in this paper against corresponding data from FOASTAT. (d) Comparison of GRIPC irrigated area estimates with those from Frolking et al. (2002) and
Frolking et al. (2006) at the district- or county-level. In panels (a) and (c), Symbols are sized according to country area. Similarly, regression results shown in the legend reflect
linear model weighted by country area *includes fraction of paddy area expected to be irrigated, using country-level estimates from Huke and Huke (1997).

Fig. 7. Maps of irrigation in Georgia, according to GRIPC (left; irrigated croplands are black) and field-level data for the state of Georgia from Hook et al. (2009) (right: irrigated
fields are black).
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Fig. 8. Maps of irrigation locations in Nebraska, according to GRIPC (left; irrigated croplands are black) and field-level data for the state of Nebraska from CALMIT (2005)
(right; irrigated fields are black).

with more irrigation and overestimate irrigation in areas with
less irrigation. Overall, the IWMI–GIAM map tends to underesti-
mate irrigation in Europe (slope of linear regression is 0.85), and
is also less strongly correlated with the inventory data than GRIPC
(R2 = 0.71). Interestingly, the correlation between the GRIPC and
IWMI data sets (R2 = 0.60) is less than that between each satellite-
based dataset and the inventory data, which demonstrates that
different remote sensing observations (e.g., MODIS vs. AVHRR)
and mapping approaches (e.g., supervised vs. unsupervised clas-
sification) can yield rather different results. For example, although
both GRIPC and IWMI–GIAM overestimate irrigated areas in some
regions of Europe relative to FSS data, the locations where this
occurs tend to be different in each map; whereas GRIPC overes-
timates irrigated areas in heavily irrigated regions, IWMI–GIAM
overestimates irrigated areas in regions with little-to-no irrigated
area (areas with <0.1 Mha irrigated area in FSS; open circles in
Fig. 6b).

In many European nations, irrigation is used in a supplemen-
tary fashion, where water is applied to fields only during droughts
(Wriedt et al., 2009b). This style of irrigation is especially common
in Central and Northern Europe, where less agricultural area is irri-
gated. Thus, the inventory data from FSS, which is representative of
irrigation in 2004, may not be representative of irrigation patterns
in other years, especially in less heavily irrigated areas. GRIPC, on
the other hand, appears to accurately reflect the irrigated areas in
FSS in these NUTS2 regions, possibly because climatic conditions in
Europe were relatively normal from 2004–2006.

Irrigated croplands in North America

In the continental US, GRIPC closely agrees with the represen-
tation of irrigation according to the MIrAD-US 2007; 96% of 500 m
cells mapped as irrigated in GRIPC are also irrigated in the MIrAD-
US data set (Table 6). The User’s Accuracy, on the other hand (44%),
reflects substantial errors of commission in GRIPC. These errors are
most prevalent in humid areas of the Southeastern United States,
such as Florida and Southern Texas, as well as the Willamette Val-
ley in Western Oregon. Detection of irrigation with remote sensing
in humid areas such as these is complicated by the presence of nat-
urally occurring surface moisture and green vegetation during the
crop-growing period. While MIrAD-US is similarly based on MODIS
data fused with census data sets, it is more tightly constrained by

Table 6
Accuracy assessment of GRIPC compared with high-resolution land use maps and
field-level irrigation data sets.

Location Overall
accuracy

Producer’s
accuracy

User’s
accuracy

Continental United States 0.96 0.59 0.44
Georgia 0.86 0.75 0.26
Nebraska 0.84 0.59 0.68
Australia 0.98 0.39 0.16

the census data, obscuring the difficulties that remote sensing data
have with detecting irrigation in humid areas. At the same time,
errors of omission in GRIPC are also prevalent in some semi-arid
regions of the Great Plains, specifically in Eastern Nebraska.

In Georgia, GRIPC estimates of irrigated area show strong
agreement with field-level data from 2007 and 2008 (overall agree-
ment = 86%), but unlike Eastern Nebraska, tended to over-predict
irrigation (user’s accuracy of 26%; Fig. 7; Table 6). As we describe
above, comparison with the MIrAD-US data set demonstrated that
GRIPC tends to over-estimate irrigated area in humid parts of the
United States. In spite of the humid subtropical climate, many crop-
land areas in Georgia require irrigation because of fast-draining
soils in the Coastal Plains and the high water requirements of cot-
ton, which is the largest crop in Georgia by area. Soil type and
crop type data were not explicitly included in the methods and
data we used to create GRIPC. In the future, it may be possi-
ble to improve mapping of irrigated croplands by incorporating
these types of information in classification models. In the short
term, however, accurate detection of irrigation in humid regions
will remain a challenge.

GRIPC also showed good agreement with data from field level
inventory data in Nebraska in 2005; the overall agreement between
inventory and irrigated areas from GRIPC was 84% (Fig. 8). Pro-
ducer’s and user’s accuracies (59% and 68%, respectively) suggest
that GRIP does tend to underestimate irrigated areas for this region.
In particular, GRIPC fails to capture irrigated areas in Northeast-
ern Nebraska. This part of Nebraska possesses a humid continental
climate where farmers use deficit irrigation to avoid water stress
during critical crop growth stages to minimize unsustainable water
withdrawal from the Ogallala Aquifer. This style of irrigation, how-
ever, is not well-captured by remote sensing, and thus it is prone
to under-representation in GRIPC.
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Irrigated cropland in Australia

Accuracy assessment of GRIPC in Australia using the ACLUMP
data set shows overall agreement of 98% (Table 6). In general, GRIPC
agrees with the ABARES data regarding the general geographic dis-
tribution of irrigated lands in Australia in 2005–2006. However,
GRIPC also significantly overestimates irrigation in many parts of
Australia, which is reflected by a low user’s accuracy (16%). Addi-
tionally, some areas of dryland wheat were incorrectly labeled as
irrigated croplands in GRIPC. As a result, in the GRIPC map, the
extent of irrigation in these regions tends to be much larger.

It is also important to note that irrigated agriculture in Australia
changed dramatically during the 2004–2006 study period repre-
sented by GRIPC. Specifically, the National Water Initiative was
adopted in 2004, and was aimed at restoring environmental flows
to the Murray–Darling River System through reduced irrigation and
water trading. This initiative successfully reduced irrigation by 30%
from 2004–2006. Hence, it’s possible that some of the positive bias
in irrigated area represented by GRIPC is an artifact of changes in
irrigated areas that occurred on the ground during the study period.

Paddy areas

Country-level estimates of paddy area from GRIPC are strongly
correlated with those from FAOSTAT (R2 = 0.89; Fig. 6c). Compared
with rice harvested area from FAOSTAT in 2005, GRIPC appears to
slightly underestimate paddy areas (slope = 0.86). However, FAO-
STAT includes double-counting of areas that undergo two rice
harvests per year, leading to overestimation of rice-growing area
in the FAOSTAT data. For example, in Bangladesh, the FAOSTAT
estimate of harvested rice area is about 75% of the country’s land
area, which is probably higher than the land area devoted to
rice growing, due to multi-cropping practices. In this context, the
GRIPC estimate of paddy area is about 50% of the land area of
Bangladesh.

To evaluate the representation of paddy croplands in GRIPC at
regional scale, we used the data sets compiled by Frolking et al.
(2002), (2006) to compare county and district-level estimates of
paddy area in 2000 in China and India, which possess the majority
of paddy croplands worldwide. Fig. 6d shows modest overall agree-
ment (R2 = 0.54), but GRIPC tends to underestimate paddy areas in
China while overestimating them in India. In both cases, persistent
cloud cover in the humid tropics, especially during the monsoon
season when much of the rice in Asia is grown, causes over-reliance
on ancillary and inventory data sources, which fail to capture
finer-scale gradations in paddy area. This likely contributes to
under-prediction of paddy croplands in China and over-prediction
of paddy croplands in India in GRIPC.

Discussion

Sources of uncertainty in GRIPC

The GRIPC data set was produced by fusing several data sources
using a supervised classification methodology. These data include
remotely sensed imagery, agricultural census data, meteorological
measurements, and surface moisture fields from models. Each of
these data sources possess uncertainties and deficiencies that limit
their utility as stand-alone sources of information related to irriga-
tion. Our approach was designed to reduce the individual effects of
these uncertainties by exploiting joint information related to agri-
culture and irrigation in each data source. However, in the absence
of perfect predictors with low uncertainty, the properties of the
data used to create GRIPC inevitably affect our results. In particular,
remote sensing data sets include uncertainties due to misregistra-

tion, topographic effects, sensor noise, and inadequate screening
for clouds and cloud shadows (Lunetta et al., 1991). Uncertainties
in agricultural census data sets are less well characterized, and
data availability to support robust statistical summaries is a key
issue, especially in developing countries (FAO, 2012). Uncertain-
ties in climatological data sets include sparse and missing surface
meteorological measurements (New et al., 1999), and the modeled
soil moisture data sets used to produce GRIPC include uncertainties
associated with the forcing data used to create these modeled fields,
as well as the assumptions and errors imbedded in the models used
to generate them.

Among these varied sources of uncertainty, it is likely that those
influencing the remotely sensed data had the strongest effect on
GRIPC. A comparison of the fraction of cropland irrigated in one-
degree cells (Fig. 9) shows that the final product of GRIPC is more
influenced by the results of the decision tree classifier (R2 = 0.64)
than by the information in MIRCA2000 (R2 = 0.33). The majority
of the data provided to the decision tree classifier is based on
remotely sensed observations, suggesting that these are exerting
the strongest influence on the final designation of water manage-
ment status in GRIPC.

An additional source of error in our approach is the agricul-
tural mask we used to distinguish natural land cover and urban
areas from agricultural land. For GRIPC, we used the MODIS Land
Cover Type Product, which contains uncertainties due to land cover
changes and classifier error. By using multi-year time series of
the MODIS Land Cover Type product, our methodology reduces
uncertainty associated with errors in this product. However, our
approach does not eliminate all errors in the mask, and remaining
errors are propagated into GRIPC. In particular, land cover and land
use in areas with heterogeneous mixes of agriculture and natural
vegetation are difficult to map from MODIS, and are therefore likely
to have the higher frequencies of classification error in the MODIS
product.

Assessment of uncertainty in GRIPC

The utility of land use and land cover maps is greatly improved
with the addition of an accuracy assessment using independent
data at randomly distributed sites or clusters of sites. The benefits of
such an exercise include the addition of uncertainty estimates and
refinement of any area estimates produced from the map. How-
ever, assessing a global map in this way is a very labor intensive
undertaking, sometimes requiring as much time and effort as the
original map production. Therefore, most global cropland maps
rely on alternate methods of assessment (e.g., Siebert et al. (2005),
(2013); Portmann, et al. (2010); Ramankutty et al. (2008)).

Among land cover and land use characteristics, irrigation sta-
tus is particularly difficult to assess using available data. The
dynamic nature of agricultural management heightens the neces-
sity of obtaining data during the time period of interest, which
is not always feasible for randomly selected sites. For instance,
Google Earth imagery may not be available during the time period
of interest, and signs of irrigation may not be present outside of the
growing season and year during which it was used. As an exam-
ple, we were unable to ascertain the irrigation status of 55% of the
original 328 STEP sites assessed in this study for training data. This
level of missing data would substantially decrease the utility of any
accuracy assessment that relies on Google Earth. The alternative is
to acquire high spatial resolution data following a strategy such as
that described by Olofsson et al. (2012). However, acquisition and
analysis of this type of imagery is far beyond the scope of what
is feasible for most studies. In this study, we instead used a cross-
validation analysis based on the training data as well as comparison
with a variety of available independent data sets produced at global,
regional, and local scales to assess the accuracy of GRIPC.
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Fig. 9. Global comparison of the area fraction of irrigated cropland irrigated in one-degree cells for MIRCA2000 vs. GRIPC (upper panel) and decision tree classifier vs. GRIPC
(lower panel). See Fig. 2 for full classification algorithm. GRIPC estimates are correlated more strongly with those from the decision tree classifier than those from MIRCA2000.
Horizontal lines are median, boxes represent 25–75th%; whiskers extend to the most extreme points not considered outliers, and + are outliers.

Relationship of GRIPC to MIRCA2000 and IWMI–GIAM

Unlike GRIPC, MIRCA2000 is based almost exclusively on agri-
cultural census and inventory data. To spatialize these data
onto a regular grid, MIRCA2000 uses the Cropland2000 data set
(Ramankutty et al., 2008), which is derived from older global
land cover datasets (GLC2000 and Version 4 of the MODIS Land
Cover Type Product) to map cropped areas within administrative
census units. Thus, while GRIPC and MIRCA2000 both rely upon
satellite-based land cover maps to identify the global distribution
of croplands, they differ in terms of the data sets used to mask agri-
culture and how these data are merged with other data sources.
Specifically, MIRCA2000 uses several older sources of land cover
data, and relies on census estimates to determine the total cropland
area in each administrative unit. GRIPC, on the other hand, uses a
single remote-sensing derived source of land cover data (the MODIS
Land Cover Product) and does not rely on census data to determine
the location of croplands. Equally important, MIRCA2000 and GRIPC
differ in the data sources used to determine the irrigation status
of croplands. Whereas MIRCA2000 relies entirely on census data
to do this, GRIPC uses a combination of remote sensing imagery,

climate and model derived data sets, and agricultural census infor-
mation. As a result, uncertainties and errors in MIRCA2000 reflect
limitations of the FAO agricultural census data, while errors and
uncertainties in GRIPC are less dependent on a single data source.

The IWMI–GIAM data set, on the other hand, relies entirely on
remote sensing data sources to determine both the distribution of
croplands and their irrigation status. As a result, uncertainties and
limitations of the remote sensing data used to produce this dataset
(e.g., missing data, misregistration, gridding errors, topographical
effects, and classifier error) affect the quality of the final product.
GRIPC also relies heavily on remote sensing data sources, but incor-
porates a variety of other data sources. Hence, while both data sets
are influenced by limitations of remote sensing, GRIPC attempts to
reduce errors introduced by these limitations by exploiting infor-
mation from agricultural inventory, climate and modeled surface
moisture fields.

Paddy croplands

Paddy agriculture is an enormously important class of croplands
(Maclean and Hettel, 2002). However, because paddy croplands
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are mostly located in the humid tropics and are frequently
multi-cropped, they are difficult to map using remote sensing.
Specifically, persistent cloud cover precludes observations through
much of the year in many parts of the tropics. As a result, MODIS
time series contain high proportions of missing data over many
areas with the highest density of paddy croplands. For example,
in a major rice-growing area of Uttar Pradesh in Northern India,
44% of MODIS NBAR observations were missing. Similarly, rice-
growing areas in Jiangsu in Eastern China have about 61% of MODIS
observations missing in an average year. Because of this, remote
sensing-based results tend to be of lower quality, and our method-
ology to map the distribution of paddy croplands relies more
heavily on other data sources, especially crop inventories data,
which are generally reported for political units, not high-resolution
grids, and may not capture the full dynamics of agriculture in
rapidly changing economies (e.g., Deng et al., 2009). Comparisons of
paddy croplands in GRIPC with existing maps of paddy agriculture
suggest that the representation of paddy croplands in GRIPC is con-
sistent with these other data sets. However, it is important to note
there is clearly room for improvement in this element of the GRIPC
data set. Moving forward, additional data sources derived from
microwave remote sensing (e.g., Bouvet et al., 2009) or methods
that exploit time series properties of remote sensing more effec-
tively (e.g., such as those described by Xiao et al. (2005) and Shao
et al. (2001)) may provide avenues to help resolve the limitations
of optical remote sensing and supervised classification of paddy
croplands.

Conclusions

We developed a new map of global irrigated, rain-fed, and paddy
croplands circa 2005 at 500 m spatial resolution by merging infor-
mation from satellite remote sensing, climate, and census-based
inventory data sets. To generate this map, a database of sites char-
acterizing the geographic distribution of global croplands was used
to estimate a supervised classification of global cropland classes.
Results from this classifier were merged with available inven-
tory data to create the final map, which we call GRIPC. GRIPC
includes 314 Mha of irrigated cropland, which agrees closely with
national inventory statistics from FAOSTAT (305 Mha), but includes
24% less area of irrigated cropland than the IWMI–GIAM map of
global irrigation (399 Mha). The map is available for download at
https://dl.dropboxusercontent.com/u/12683052/GRIPCmap.zip.

The results from this effort demonstrate the potential of merg-
ing remote sensing and existing inventory data sets to improve
information regarding water management of global croplands. At
the same time, there is clear room for refinement of the methods
and results we present in this paper. For example, because GRIPC
uses the MODIS Land Cover Type Product to discriminate natural
vegetation and urban areas from agricultural land areas, errors in
this product will propagate into GRIPC. In addition, GRIPC does not
include several important classes of irrigated agriculture includ-
ing deficit irrigation (irrigation occurring less than once per year),
permanent crops (orchards and vineyards), and un-harvested pas-
tures. Future efforts could further refine irrigation estimates by
identifying areas under these types of management.

A key goal of this effort is to provide an improved basis for
regional to global scale modeling and analysis studies that require
information on irrigated agriculture. Potential applications that
might benefit from GRIPC include regional-to-global estimation of
green and blue water use by agriculture (e.g., Liu and Yang (2010)),
assessment of irrigation impacts on regional hydrology and cli-
mate (e.g., Lobell et al. (2008)), and analyses of global yield gaps
(e.g., Licker et al. (2010)). In addition, because GRIPC provides infor-
mation on crop water management at 500 m spatial resolution, it

should be particularly useful for high resolution land surface mod-
eling at global scale (e.g., Wood et al., 2011).

As climate change impacts become more pronounced and
worldwide demand for agricultural commodities increases in the
coming decades, agricultural practices are likely to adapt and
change rapidly. In particular, water demand by agriculture is pro-
jected to increase, but will only be met if sustainable sources of
water are available. Hence, knowledge regarding the global dis-
tribution and intensity of irrigation is critical to balancing water
needed for food production with water needed for industry, house-
holds, and the environment. Results from this study can support
this type of analysis by providing a new high-resolution global map
rain-fed, irrigated and paddy croplands. In this context, GRIPC has
two key innovations relative to available global crop type and man-
agement databases (e.g., Monfreda et al., 2008; Portmann et al.,
2010). First, GRIPC has relatively high spatial resolution (500 m vs.
5 arc-minute). Second, it was produced using a consistent method-
ology that does not change across administrative boundaries. More
generally, the data and methods presented in this paper provide a
foundation for ongoing monitoring of global water use by agricul-
ture in the coming decades.
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